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Knowledge of podocyte biology is growing rapidly. Podocytes

are crucially involved in most hereditary diseases affecting the

glomerulus, which all exhibit podocyte-specific defects, that is,

foot process effacement and protein leakage. Efforts to

understand molecular mechanisms causing these

derangements are increasingly successful and will allow a

better targeting of interventions to halt the progression of

chronic renal disease. Curr Opin Nephrol Hypertens 10:331±340.
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Introduction
The concept that the podocyte, rather than the
mesangial cell, is the major culprit in the progression
of glomerular diseases, has gained substantial ground.
The discovery that podocyte-speci®c proteins cause
hereditary kidney diseases, such as nephrin and the
congenital nephrotic syndrome of the Finnish type, has
led to the notion that podocytes are critically involved in
most genetic kidney diseases affecting the glomerulus.
All these diseases eventually lead to progressive renal
failure.

This broadened view has greatly increased the research
activities in this ®eld and has already resulted in
considerable progress in our understanding of the cell
and molecular biology of this unique cell type as well as
of its role in the development of glomerular diseases.

Hereditary podocyte diseases
Unlike the Alport syndrome, for which the genetic
defect was elucidated some time ago, the mutated genes
responsible for several other hereditary podocyte dis-
eases have been identi®ed only recently. The diverse
nature of the proteins encoded by those genes attests to
the complicated structure through which the podocyte
contributes to the establishment and maintenance of the
glomerular ®ltration barrier.

Alport syndrome

As several excellent reviews on Alport syndrome have
appeared recently (e.g.Ref. [1]), only certain features of
this disease will be highlighted. At a prevalence of
*1 : 5000, Alport syndrome is a very frequent disease; it
can be inherited in an X-chromosomal, an autosomal-
recessive and an autosomal-dominant fashion. The X-
chromosomal form affects *85% of all patients, whereas
an autosomal-dominant inheritance can be found in only
*1% of the patients. Initially, the patients present with
hematuria, but eventually they develop end-stage renal
failure. The ultrastructural ®nding of an irregular
thickening and lamination of the glomerular basement
membrane (GBM) is typical for Alport syndrome, and
now that the mutated genes COL4A3, COL4A4 and
COL4A5 have been identi®ed, it can be understood
better.

During the early stages in the differentiation of the
glomerulus, the prospective GBM contains the a1 and a2
chains of collagen IV, while later on a network consisting
of the a3, a4 and a5 chains of collagen IV is added by the
podocyte [2±7]. The X-chromosomal form of Alport
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syndrome is due to mutations in the COL4A5 gene,
which encodes the a5 chain of collagen IV, and the
autosomal-recessive form has been traced back to
mutations in the COL4A3 and COL4A4 genes on human
chromosome 2 [1,8]. Apparently, autosomal-dominant
Alport syndrome is caused by a splice site mutation in
the COL4A3 gene [9]. An important feature of Alport
syndrome is the ®nding that mutations in any one of the
three chains leads to the absence of the other two chains
and to the continued strong expression of collagen IV a1
and a2 chains [3,10±12]. Although this phenomenon is
not fully understood as yet, it has become obvious that
two collagen IV networks exist in the GBM, one of them
comprising a12a2 trimers and the other a3a4a5 trimers
[13]. Recent evidence suggests that the respective NC1
domains at the COOH-terminus of the a chains
discriminate among each other, such that formation of
the triple helix and assembly of the network are
determined by the identity of the NC1 domains [14 .].
It remains to be determined, however, whether the
coordinated expression of the various collagen IV chains
occurs at a mRNA [12] or post-mRNA [15] level.

Nail±patella syndrome

Nail±patella syndrome (syn. hereditary onycho-osteodys-
plasia) is an autosomal-dominant disease with an
incidence of *1 : 50 000, which usually is diagnosed
because of the dysplastic nails and missing or hypoplastic
patella. Between one-third and 50% of the patients also
suffer from renal disease, in particular proteinuria and
hematuria, which may eventually lead to chronic renal
failure [16]. Ultrastructural studies of affected kidneys
have demonstrated obvious defects of the podocytes and
the GBM. Typically, extensive foot process effacement
(FPE) can be detected, and the GBM appears thickened
and contains both ®brillar inclusions and electron-lucent
areas (e.g. Ref. [17]).

Recently, mutations in the LMX1B gene on human
chromosome 9q34 were identi®ed as being responsible
for the disease [18]. An important clue for the involve-
ment of LMX1B came when the corresponding gene was
inactivated in mice, since they also suffer from limb and
kidney defects [19]. The changes seen in glomeruli of
Lmx1b (7/7) mice largely correspond to the renal lesions
observed in patients, which places the podocyte at the
center of the pathomechanism leading to proteinuria,
hematuria, and chronic renal disease. Somewhat surpris-
ingly, however, the heterozygous Lmx1b knockout mice
show no phenotype, which contrasts with the dominant
inheritance in human patients. The LMX1B gene
encodes a transcription factor of the Lin-11, Isl-1, Mec-
3 (LIM)-domain family [20]. Whereas the LIM domains,
®rst described in Lin-11, Isl-1 and Mec-3, are cysteine-
rich, zinc binding motifs, which probably mediate
interaction with other proteins, homeodomains are

responsible for the binding to DNA. All the mutations
described so far affect those two domains, either as
truncating mutations or as missense mutations [18,21±25].
Mutations in the LIM domains are predicted to cause
disruption of association with interacting proteins, while
mutations in the homeodomain should affect the DNA-
binding properties of LMX1B. The dominant mode of
inheritance could be explained by haploinsuf®ciency, by
a gain of function and by a dominant-negative mechan-
ism. So far only one report has addressed this question; it
suggests that nail±patella syndrome is due to haploinsuf-
®ciency [26].

Congenital nephrotic syndrome of the Finnish type

Congenital nephrotic syndrome of the Finnish type
(CNF) is inherited in an autosomal-recessive fashion and
is characterized by the perinatal onset of severe
proteinuria, which usually requires renal replacement
therapy in order to save affected children. The mutated
gene, NPHS1, is located on chromosome 19q13.1 and is
organized into 29 exons; it was identi®ed using a
positional cloning strategy [27,28]. Nephrin, the protein
product of NPHS1, is 1241 amino acids long and
probably represents an integral plasma membrane
protein. In the kidney it is exclusively expressed in
podocytes. It consists of a large extracellular domain with
eight immunoglobulin-like motifs and one ®bronectin
type III motif, a single transmembrane domain and a
short cytoplasmic tail. Sequence comparison of human
nephrin with murine [29] and rat [29±31] nephrin has
revealed that the three proteins are more than 80%
identical. Both the human [32..] and the rat [30] nephrin
transcripts are alternatively spliced, but the functional
signi®cance of those splice products is not yet clear.

So far, no mutational hot spots have been identi®ed,
although two types of mutations account for the vast
majority of cases. The most common one, Finmajor,
represents a deletion of two nucleotides in exon 2, which
is predicted to result in the synthesis of a truncated
protein of only 90 amino acids, whereas in the Finminor

mutation, a nonsense mutation in exon 26 should lead to
a protein with 1109 amino acids. In addition to those two
mutations, a number of other mutations have been
described, which are distributed over the length of the
protein [27,28,33,34,35 .].

The nephrin mRNA has been localized to podocytes by
in-situ hybridization [27,28]. Immunogold-electron-
microscopy has demonstrated that the nephrin protein
is associated predominantly, although possibly not
exclusively, with the slit diaphragm [32 ..,36..,37.."],
which has led to the hypothesis that nephrin forms the
backbone of the slit diaphragm. This notion is supported
by the ®nding that patients with mutations in the
NPHS1 gene typically lack a slit diaphragm (although
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®ltration slits are present), and that in most cases nephrin
protein cannot be detected by immunohistochemistry in
the glomeruli of those patients [32 ..,35.]. The absence
of nephrin immunoreactivity is somewhat surprising,
since the nephrin mRNA continues to be expressed
[32 ..,35.]. The podocytes of one patient, however, still
expressed nephrin protein; in addition slit diaphragms
could be detected by electronmicroscopy. This patient
had inherited the Finmajor mutation and a missense
mutation, which resulted in the substitution of an
arginine residue by a cysteine at position 743 (R743C)
[35 .]. Recent studies of the role of nephrin in the
development of the ®ltration barrier indicate that
nephrin is dispensable in early development of podocyte
junctional complexes, but is essential for the assembly of
the slit diaphragm [38.] (see also below).

Familial forms of focal segmental glomerulosclerosis

Focal segmental glomerulosclerosis (FSGS) comprises
several distinct disease entities, the genes for two forms
of which have been identi®ed. Steroid-resistant nephro-
tic syndrome is inherited in an autosomal-recessive
fashion and is caused by mutations in the NPHS2 gene
located on human chromosome 1q25±q31 [39]. This
disease begins with proteinuria in children and then
progresses rapidly to FSGS. NPHS2 encodes a 383
amino-acid protein named podocin, which is predicted to
be an integral membrane protein. Northern blot analysis
has shown that the podocin mRNA is exclusively
expressed in the kidney, and using in-situ hybridization
it has been localized in podocytes. So far the function of
podocin is unknown; the only clue comes from its
similarity to the MEC-2 protein from Caenorhabditis

elegans, which is involved in mechanotransduction [40..].
An autosomal-dominant form of FSGS is caused by the
ACTN4 gene on human chromosome 19q13.1 [41 ..,42].
ACTN4 codes for a-actinin-4, which has been localized to
podocytes, where it probably serves to crosslink actin
®laments [41 ..].

The involvement of the podocyte-speci®c Wilms' tumor
protein in hereditary glomerular diseases such as Denys±
Drash syndrome and Frasier syndrome has been
reviewed extensively several times (e.g. Ref. [43]), and
will not be considered here since little new information
has emerged recently.

Podocyte cell biology
The highly specialized structure and function of
podocytes is based on a complex cytoskeletal machinery
that regulates the adhesion of foot processes to the
GBM, the motility of foot processes on the GBM, and
some kind of slit membrane dynamics, as yet poorly
understood. The recent progress in understanding this
machinery has emerged, to a large extent, from the
analysis of structural and functional derangements; that
is, loss of the interdigitating foot process pattern and loss
of size-selective function. For the sake of clarity this
progress will be summarized in four sections, although it
is obvious that the issues are interwoven. Major points
are schematically illustrated in Fig. 1.

The slit membrane and loss of size-selective function

Major progress in this ®eld started with the discovery of
the gene that, in mutated form, causes CNF and its
product nephrin [27] (see above). Cloning of the rat and
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Figure 1. Schematic drawing of the molecular equipment in podocyte foot processes
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mouse homologs followed quickly [36,44,45.]. The
results of the corresponding immunocytochemical stu-
dies [32 ..,36..,37..] showed that nephrin is localized at
the slit membrane. Based on the fact that nephrin is a
member of the immunoglobulin family of cell±cell
adhesion molecules, a model of homophilic interaction
has been proposed [37..,38.]; there is, however, no
experimental evidence so far to support this model.

In addition to nephrin, a second molecule, P-cadherin,
has been localized to the slit diaphragm in rat and human
kidneys by immunocytochemical techniques [38.,46..].
Also for this molecule a homophilic interaction at the slit
membrane has been assumed, proposing that the slit
membrane corresponds to a modi®ed adherens junction
[46 ..]. Presently, however, it is not clear to what extent
nephrin and P-cadherin participate in the structural
organization of the slit membrane.

There is convincing evidence that without nephrin the
glomerular ®lter is leaky for proteins, although the
underlying mechanism is a matter of debate. The
nephritogenic monoclonal antibody 5-1-6, which has
been known since the late 1980s to induce proteinuria in
rats [47] has been shown to be directed against the
extracellular domain of nephrin [31,45 .]. Injection of the
5-1-6 antibody into rats led to pronounced proteinuria
and to a redistribution of nephrin from a linear to a
granular pattern (associated with decreased nephrin
mRNA expression). Surprisingly, no structural changes
of the ®ltration slits or of other portions of the ®ltration
barrier were detected [31,48].

There are other ®ndings that are dif®cult to reconcile with
the concept that nephrin per se represents the major size-
selective ®lter. In puromycin aminonucleoside (PAN)
nephrosis in rat, proteinuria was accompanied by down-
regulation of nephrin mRNA, dislocation of nephrin from
the slit membrane, and extensive FPE [31,44]. By
contrast, in passive Heymann nephritis (PHN), in anti-
GBM glomerulonephritis, and in Thy1- mediated glomer-
ulonephritis nephrin expression was not changed, though
diffuse FPE and proteinuria were observed [44,49].

Taken together, there is strong evidence that nephrin is a
component of the slit membrane. In the absence of
nephrin a slit membrane does not develop and the ®lter as
a whole is leaky for proteins. On the other hand, the
podocytes in kidneys from patients with CNF do develop
interdigitating foot processes, which are separated from
each other by variably developed junctional structures
that probably contain P-cadherin, are associated with ZO-
1, and frequently even show a regular width [38.] (Kriz et
al., unpublished observations). It therefore appears that
the formation of an interdigitating foot process pattern
and regular spaces are independent of nephrin. The

molecules underlying this arrangement are unknown
[38.], but they may represent an incomplete junction
(containing P-cadherin) that develops into a slit mem-
brane when nephrin comes into play. From this point of
view, nephrin is either an integral component of the slit
membrane (dif®cult to reconcile with the maintenance of
a structurally intact slit membrane after a redistribution of
nephrin), or ± as suggested by one group of researchers
[49] ± it is necessary for the assembly of the slit
membrane, but not for its maintenance.

One attractive candidate for the regulation of nephrin's
function is CD2AP/CMS (CD2-associated protein/
p130Cas ligand with multiple SH3 domains). CD2AP/
CMS has been cloned independently by virtue of its
interaction with the T-cell protein CD2 [50] and the
docking protein p130Cas (crk-associated substrate) [51].
CD2AP/CMS possesses multiple motifs for protein±
protein interaction. CD2AP/CMS-de®cient mice exhibit
a congenital nephrotic syndrome and die at 6±7 weeks of
age from renal failure [52 .,53..]. In HeLa cells CD2AP/
CMS and nephrin can be co-immunoprecipitated,
suggesting a direct interaction of both proteins also in
podocyte foot processes [53..]. CD2AP/CMS therefore is
a candidate for an adaptor linking the cytoskeleton to
nephrin and the targeting of signaling complexes to
nephrin. However, it is also clear that the absence of
CD2AP/CMS in knockout mice interferes neither with
the formation of interdigitating foot processes and a slit
diaphragm nor with the expression of nephrin in foot
processes [52.,53..]; FPE in those mice develops
secondarily.

Finally, two further aspects of nephrin should be
mentioned. First, several splice variants of nephrin have
been found in humans and rats [30]. The relevance of
these alternative splice forms, especially of those lacking
a transmembrane domain, is not yet clear, but it should
be mentioned that nephrin lacking the transmembrane
domain is excreted in the urine in PAN nephritis [44].
Second, constructs of the nephrin promoter have very
recently been used to faithfully target expression of a
transgene to podocytes [54.,55.] These constructs will
be extremely useful to study podocyte function in
transgenic animals.

The cytoskeleton: its connections to the glomerular

basement membrane and foot process effacement

The cytoskeleton of major processes of podocytes
consists mainly of microtubules. These microtubules
are of mixed polarity, which appears to be essential for
process formation of podocytes [56]. The nonuniform
microtubular polarity is generated by the motor protein
CHO1/MKLP1, which is thought to transport fragments
of microtubules in a minus end-distal fashion along
preexisting plus end-distal microtubules [56].
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The podocyte foot processes contain an actin-based
cytoskeleton. The micro®laments form loop-shaped
bundles, with their limbs running in the longitudinal
axis of the foot processes. The bends of these loops are
located centrally at the transition to the major processes
and are probably connected to the microtubular skeleton
[57]. The micro®lament bundles are densely intercon-
nected by a-actinin. Recently, it has been discovered
that podocytes speci®cally express a-actinin-4 [41..]. So
far, a-actinin-4 has been localized to membrane ruf¯es
and implicated in cell motility in non-renal cells [58,59].
The speci®c function of a-actinin-4 in podocytes is not
known; however, the mutations in a-actinin-4, which
cause familial FSGS, result in enhanced F-actin bund-
ling [41 ..].

The relevance of a further podocyte-speci®c actin-
associated protein, synaptopodin [60], is so far unknown.
Furthermore, podocytes express ezrin, which probably
attaches the actin cytoskeleton to podocalyxin via the
linker protein NHERF2 (Na+/H+-exchanger regulatory
factor 2) [61,62].

Peripherally the actin bundles are linked to the slit
membrane by the adaptor proteins ZO-1, catenins and
probably CD2AP [46..,52], and to the GBM by integrins
and dystroglycans. The integrin complex consists of
vinculin, paxillin and talin, and of a3b1 integrin dimers,
which bind to collagen IV a3, a4 and a5 chains as well as
to laminin 11, a heterotrimer composed of a5/b2/g1
laminin chains [63 .]. The dystroglycan complex
[64,65 .,66.] consists of the cytoplasmic adaptor protein
utrophin, of the transmembranous b-dystroglycan, and of
the extracellular matrix-binding a-dystroglycan which is
a receptor for agrin and laminin a5 chains.

On the one hand, dystroglycans and integrins are
thought to coordinate the formation of a polygonal
network of laminin in basement membranes [67]. Thus,
cell matrix contacts in podocyte foot processes may be
crucially involved in maintenance of GBM substructure
and hence of barrier function. On the other hand,
outside-in signaling via these systems quite obviously
in¯uences the function of the cytoskeleton which, in
cases of derangements of the GBM, may lead to FPE
(and to protein leakage).

FPE is the stereotypical structural response of podocytes
to a great variety of challenges. It is a process in which
the foot processes of two adjacent podocytes retract in a
strictly coordinated way, thus leading to the simpli®ca-
tion of the interdigitating pattern, a total rearrangement
of the cytoskeleton [68,69], a marked shortening of the
slit membrane and a variable appearance of other types
of junctions [70]. The classic in-vivo experiments to
induce FPE are treatment with polycations [71] such as

protamine sulfate, which neutralize the surface charges
of podocytes and PAN treatment [70], a toxic process to
which the cells respond with FPE.

Treatment of cultured podocytes with protamine sulfate
and PAN was used to obtain further insights into the
cellular mechanisms underlying FPE [72..,73]. After
both treatments, profound alterations in cell shape, a loss
of actin bundles and a reduction and redistribution of
focal contacts were consistently observed [72 .,74]. These
structural changes were accompanied by complex
changes in the cellular phosphorylation pattern. The
increase in cytoplasmic tyrosine phosphorylation con-
trasts with a reduction in tyrosine phosphorylation at
focal contacts. An important role in this process appears
to be played by cytosolic protein tyrosine phosphatases,
which target proteins at focal contacts such as paxillin
[72..]. Although the initial damaging mechanism in
complement-mediated injury is certainly different,
dephosphorylation of focal contact proteins including
paxillin appears to be common in situations terminating
in FPE [73]. The deletion of the receptor tyrosine
phosphatase GLEPP1 also suggests a participation of
tyrosine dephosphorylation in the formation of foot
processes [75 .]. Previous immuno¯uorescence studies of
a variety of adhesion and cytoplasmic proteins in normal
and nephritic human kidneys are in good agreement
with these experimental results [76].

There are exciting new pieces of evidence regarding the
role of the cytoskeleton and the GBM in initiating FPE,
both experimentally and in human cases. Kidney
development in the laminin a5 chain knockout mouse
is arrested at a very early stage; a proper GBM does not
form and podocytes do not assemble in a correct pattern
[77.]. In the GBM, the a5 laminin chain, which together
with b2 and g1 chains is assembled into the GBM-
speci®c laminin 11, is the cognate binding partner for
a3b1 integrins as well as for dystroglycan a. In the
laminin b2 chain mutant mouse a correct assembly of a,
b and g chains to laminin 11 is not possible [78]. This
mouse develops FPE and proteinuria soon after birth,
suggesting that the lack of the interaction between GBM
components and integrins in the podocytes severely
impairs the ability of the cytoskeleton to maintain the
interdigitating pattern of foot processes [52,78].

Important observations were also made in podocytes of
the integrin a3 mutant mouse. This mouse never
develops foot processes and dies in the perinatal period
[79]. Cultured podocytes from this mouse (lacking the a3
integrin gene) surprisingly displayed increased adhesion
to the substrate together with considerable changes in
the expression pattern of cytoskeletal proteins [80].
Thus, the a3 partner in the a3b1 integrin dimer appears
to modify the strength of the adhesion, a mechanism that
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may play an important role in permitting motility of
podocytes on the GBM.

The Col4a37/7 mouse develops an Alport syndrome
and shows again the great relevance of outside-in
signaling for the proper development (and dynamics)
of podocyte foot processes [81,82]. The GBM of this
mouse contains collagen IV composed of a1 and a2
chains instead of a3, a4 and a5 chains; for unknown
reasons it also contains laminin composed of a2 and a4
laminin chains, which are usually restricted to the
mesangium [83,84 .] In a double knockout of collagen
a3 and integrin a1 chains (a1b1is the mesangial integrin)
the content of a2 and a4 laminin chains in the GBM was
signi®cantly decreased and FPE was markedly improved
[83]. Again, these observations underline the great
importance of the correct integrin binding partners in
the GBM.

An important player in inside-out as well as outside-in
signaling may be an integrin-linked kinase (ILK), a b-
integrin coupled serine/threonine kinase, which was
found to be upregulated in children with CNF as well as
in two murine models of nephrotic syndrome [85]. ILK
overexpression in cultured podocytes reduced their
ability to adhere to the extracellular matrix [86]. Focal
adhesion kinase (FAK) and p130Cas are generally
involved in integrin signaling [87]. Though expression
of FAK and p130Cas has been demonstrated in
mesangial cells and podocytes in human biopsies [76],
the speci®c function of these proteins in foot processes is
unknown.

Recent developments have also begun to shed light on
the dystroglycan system. In adriamycin nephropathy in
rats, which is accompanied by bulk leakage of proteins
through the glomerular barrier, a signi®cant overall
decrease in the glomerular wall staining for dystroglycan
a and b (with segmentally enhanced expression) was
observed at sites with extensive FPE [65.]. In a study of
kidney specimens from patients with minimal change
nephrosis (MCN) and FSGS it was shown that the
density of a- and b-dystroglycan was signi®cantly
reduced in MCN but not in FSGS compared with
normal kidneys. The decreased levels of dystroglycan
expression returned to normal in MCN after steroid
treatment [66 .]. The underlying mechanisms for these
observations are obscure but probably also involve
changes in outside-in signaling.

Angiotensin II and the podocyte as a target of

proteinuria treatment

It has long been known that angiotensin II (ANG-II), in
addition to its effects on glomerular hemodynamics, also
affects the properties of the glomerular ®ltration barrier.
Importantly, the effects of ANG-II on macromolecular

permeability were found to occur in the absence of
detectable hemodynamic changes and to be mediated
via the AT1 receptor subtype [88]. Podocytes express
AT1 receptors as demonstrated by immunohistochem-
istry and functional studies [89,90.,91]. ANG-II stimula-
tion of podocytes in situ in isolated glomeruli triggers a
membrane depolarization and an increase in intracellular
Ca2+ [90.,91]. Podocytes can retain ANG-II receptors in
culture and also respond to ANG-II stimulation by an
increase in intracellular Ca2+ concentration [92]. Inter-
estingly, Ca2+ in¯ux in podocytes appears to be
independent of voltage-operated channels and may rely
on non-selective cation channels [90 .,91,93]. Whether
ANG-II signaling in podocytes further involves the
cAMP pathway or AT2 receptors cannot be clearly
answered at present [94].

Although foot processes are equipped with a contractile
apparatus, ANG-II has no discernable effect on foot
process width, spacing, or total ®ltration slit length [95].
Alternatively, ANG-II could change the coordinated
motility of foot processes on the GBM or alter the
permeability of the slit pore by signaling events that
ultimately induce conformational changes of slit pore
proteins. Furthermore, ANG-II could affect the structure
of the GBM via inside-out signaling through dystrogly-
cans and integrins, and via altered matrix production of
podocytes.

Recent work has supported the long-standing observa-
tions that in experimental models as well as in human
cases of proteinuric diseases, angiotensin converting
enzyme (ACE) inhibitors have renoprotective properties
beyond systemic blood pressure reduction [96,97 ..,
98.,99.,100,101]. There is increasing evidence that
these additional bene®cial effects of ACE inhibitors
stem from the improvement of the glomerular ®lter,
thus lowering the protein leakage through the ®lter.
The site and the mechanism by which these effects are
brought about are a matter of debate. First, there is
evidence that it is indeed the blockage of ANG-II and
not of bradykinin that accounts for the positive effects
[101,102.]. Moreover, there is increasing evidence that
these positive effects result from preservation of
podocyte function. In passive Heymann nephritis
(PHN) [98 .], ACE inhibitors prevented structural
changes of podocytes (decrease in ®ltration slit
frequency). Moreover, aging male MWF rats develop
spontaneous proteinuria, which is associated with
cellular changes in podocytes such as the redistribution
of ZO-1 from its usual location at the slit membrane
into the cytoplasm [97..]. This redistribution, as well as
proteinuria and further sclerosis development, was
inhibited by treatment with lisinopril. In addition,
bene®cial effects of ACE inhibitors were noted in
adriamycin nephropathy, where they prevent the loss of
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heparan sulfate proteoglycans from the GBM [102 .].
Taken together, these observations suggest that the
renoprotective effects of ACE inhibitors are mediated
directly at the podocyte. Further support for this
hypothesis comes from the ®nding that dihydropyr-
idine-type calcium-channel blockers, which act on
voltage-operated channels, have in general not had
antiproteinuric effects [103,104].

The deleterious effects of transforming growth factor b
(TGF-b) production induced by ANG-II on the
progression of chronic renal failure [105] may also
involve the podocyte. First there is evidence that
transactivation of the EGF receptor by ANG-II through
a Ca2+-dependent tyrosine kinase may be responsible for
ANG-II-induced TGF-b production as shown in ®bro-
blasts [106]. Second, podocytes upregulate TGF-b and
all three types of TGF-b receptors under disease
conditions [107 .,108.]. Podocyte injury was shown to
be an early event in transgenic mice with elevated levels
of circulating TGF-b [109], and TGF-b can exert
apoptotic effects on podocytes in vitro [110].

Cell cycle of podocytes

Mature podocytes are highly differentiated cells. In
response to most forms of injury they may undergo
mitosis but not cell division. Exceptions to this rule are
collapsing glomerulopathies such as HIV-associated
nephropathy and idiopathic forms of collapsing glomer-
ulopathies where podocytes undergo a dysregulation of
their differentiated phenotype and proliferate [111].
Proliferation is regulated by cell cycle proteins such as
cyclins, cyclin-dependent kinases (CDK) and their
inhibitors [112 .] Normal quiescent podocytes strongly
express the CDK inhibitors p27 and p57, but not p21
[113 .].

Two studies elucidating the pattern of cell cycle
regulatory proteins in collapsing glomerulopathies
[113 .,114.] show that, in contrast to normal and to non-
proliferating glomerular diseases, there is a marked and
uniform decrease in the expression of the CDK
inhibitors p27 and p57; p21, on the other hand, shows
de-novo expression in podocytes in the collapsing
glomerulopathies. This, together with the results of a
further study [115] indicates that p21 is not required by
podocytes to reach their characteristic differentiated
phenotype. However, in disease states the loss of p21
is associated with podocyte re-entry into the cell cycle
and development of a de-differentiated proliferative
phenotype. As to non-proliferating diseases, in-vitro
studies [116.] showed that C5b-9-induced injury to
cultured podocytes led to a decrease in p27 and to S-
phase DNA synthesis but subsequently the mitotic
proteins (cyclin B and cdc-2) were decreased preventing
mitosis and cytokinesis.

Causes of podocyte injury and progression to
segmental glomerulosclerosis
The potential causes of podocyte injury are legion; an
overview together with the pathways leading to FSGS
was given two years ago in this journal [117]. Since then
there is increasing evidence pointing to a crucial
involvement of podocytes in rat models of type II
diabetes and/or hyperlipidemia, which eventually lead to
FSGS [118.,119.,120]. In the obese Zucker rat (fa/fa rat)
it was clearly shown that early podocyte damage clearly
preceded the development of FSGS [119 .]; mesangial
cell proliferation and matrix production was absent
throughout the observation period. The pronounced
accumulation of lipids and other macromolecules in
podocytes was made responsible for a gradual loss of
podocytes. Studies of further advanced stages of the
disease demonstrated that the degeneration of nephrons
occurred via loss of podocytes, which in turn resulted in
tuft adhesions and misdirected ®ltration towards the
interstitium [120]. An involvement of the mesangium
was not obvious. In an experimental study comparing
the effects of hypercholesterolemia and hypertriglycer-
idemia after uninephrectomy it was shown that under
both circumstances sclerosis development occurred via
podocyte rather than via mesangial cell damage [118 .].
Two studies in humans with type II diabetic nephro-
pathy show a crucial involvement of podocytes in disease
development. First, the onset of the disease was shown
to correlate with the appearance of FPE and of defects in
size permselectivity presenting as `macromolecular
shunts' through the glomerular barrier [121.]. Second,
the number of podocytes per glomerulus was the
strongest predictor of disease progressions with fewer
cells predicting more rapid progression [122 .].

Conclusion
The growing knowledge of podocyte biology has placed
the podocyte into the center of mechanisms underlying
the permselectivity of the glomerular ®lter. Failure of this
function, that is, loss of permselectivity, is a major player
in most glomerular diseases, becoming the decisive
defect that leads to disease progression. Progressive renal
failure appears to be a podocyte-based disease.
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